“Navigating the Cognitive Age—a remarkable leap in human capability and understanding enabled byartificial intelligence.Navigating the Cognitive Age—a remarkable leap in human capability and understanding enabled by artificial intelligence. •
🤖I’m concerned that people are completely replacing THINKING with PROMPTING. What’s left is an empty-headed techno zombie commanded by its AI overlord.
The magic of the prompt is the dynamic interplay between humans and tech—in the context of a Socratic dialogue.”
PPL –
Human-AI collaboration will require much more than prompts to the AI.
As we wrote the day we started this blog in May of 2014, “This will require imprinting AI’s genome with social intelligence for human interaction. It will require wisdom-powered coding. It must begin right now.” https://www.socializingai.com/point/
We must move far beyond current AI/LLM prompts, to hyper-personalized situation specific individual prompts.
You see a man walking toward you on the street. He reminds you of someone from long ago. Such as a high school classmate, who belonged to the football team? Wasn’t a great player but you were fond of him then. You don’t recall him attending fifth, 10th and 20th reunions. He must have moved away and established his life there and cut off his ties to his friends here.
You look at his face and you really can’t tell if it’s Bob for sure. You had forgotten many of his key features and this man seems to have gained some weight.
The distance between the two of you is quickly closing and your mind is running at full speed trying to decide if it is Bob.
At this moment, you have a few choices. A decision tree will emerge and you will need to choose one of the available options.
In the logic diagram I show, there are some question that is influenced by the emotion. B2) “Nah, let’s forget it” and C) and D) are results of emotional decisions and have little to do with fact this may be Bob or not.
The human decision-making process is often influenced by emotion, which is often independent of fact.
You decision to drop the idea of meeting Bob after so many years is caused by shyness, laziness and/or avoiding some embarrassment in case this man is not Bob. The more you think about this decision-making process, less sure you’d become. After all, if you and Bob hadn’t spoken for 20 years, maybe we should leave the whole thing alone.
Thus, this is clearly the result of human intelligence working.
If this were artificial intelligence, chances are decisions B2, C and D wouldn’t happen. Machines today at their infantile stage of development do not know such emotional feeling as “too much trouble,” hesitation due to fear of failing (Bob says he isn’t Bob), or laziness and or “too complicated.” In some distant time, these complex feelings and deeds driven by the emotion would be realized, I hope. But, not now.
At this point of the state of art of AI, a machine would not hesitate once it makes a decision. That’s because it cannot hesitate. Hesitation is a complex emotional decision that a machine simply cannot perform.
There you see a huge crevice between the human intelligence and AI.
In fact, animals (remember we are also an animal) display complex emotional decisions daily. Now, are you getting some feeling about human intelligence and AI?
Shintaro “Sam” Asano was named by the Massachusetts Institute of Technology in 2011 as one of the 10 most influential inventors of the 20th century who improved our lives. He is a businessman and inventor in the field of electronics and mechanical systems who is credited as the inventor of the portable fax machine.
Technology and the law are converging, and where they meet new questions arise about the relative roles of artificial and human agents—and the ethical issues involved in the shift from one to the other. While legal technology has largely focused on the activities of the bar, it challenges us to think about its application to the bench as well. In particular,
Could AI replace human judges?
The idea of AI judges raises important ethical issues around bias and autonomy. AI programs may incorporate the biases of their programmers and the humans they interact with.
But while such programs may replicate existing human biases, the distinguishing feature of AI over an algorithm is that it can behave in surprising and unintended ways as it ‘learns.’ Eradicating bias therefore becomes even more difficult, though not impossible. Any AI judging program would need to account for, and be tested for, these biases.
Appealing to rationality, the counter-argument is that human judges are already biased, and that AI can be used to improve the way we deal with them and reduce our ignorance. Yet suspicions about AI judges remain, and are already enough of a concern to lead the European Union to promulgate a General Data Protection Regulation which becomes effective in 2018. This Regulation contains
“the right not to be subject to a decision based solely on automated processing”.
As the English utilitarian legal theorist Jeremy Bentham once wrote in An Introduction To The Principles of Morals and Legislation, “in principle and in practice, in a right track and in a wrong one, the rarest of all human qualities is consistency.” With the ability to process far more data and variables in the case record than humans could ever do, an AI judge might be able to outstrip a human one in many cases.
Even so, AI judges may not solve classical questions of legal validity so much as raise new questions about the role of humans, since—if we believe that ethics and morality in the law are important—then they necessarily lie, or ought to lie, in the domain of human judgment.
In practical terms, if we apply this conclusion to the perspective of American legal theorist Ronald Dworkin, for example, AI could assist with examining the entire breadth and depth of the law, but humans would ultimately choose what they consider a morally-superior interpretation.
The American Judge Richard Posner believes that the immediate use of AI and automation should be restricted to assisting judges in uncovering their own biases and maintaining consistency.
At the heart of these issues is a hugely challenging question: what does it mean to be human in the age of Artificial Intelligence?
Researchers have started developing artificial intelligence with imagination – AI that can reason through decisions and make plans for the future, without being bound by human instructions.
Another way to put it would be imagining the consequences of actions before taking them, something we take for granted but which is much harder for robots to do.
“When placing a glass on the edge of a table, for example, we will likely pause to consider how stable it is and whether it might fall,” explain the researchers in a blog post. “On the basis of that imagined consequence we might readjust the glass to prevent it from falling and breaking.”
The team working at Google-owned lab DeepMind says this ability is going to be crucial in developing AI algorithms for the future, allowing systems to better adapt to changing conditions that they haven’t been specifically programmed for. Insert your usual fears of a robot uprising here.
“If our algorithms are to develop equally sophisticated behaviours, they too must have the capability to ‘imagine’ and reason about the future. Beyond that they must be able to construct a plan using this knowledge.”
To do this, the researchers combined several existing AI approaches together, including reinforcement learning (learning through trial and error) and deep learning (learning through processing vast amounts of data in a similar way to the human brain).
What they ended up with is asystem that mixes trial-and-error with simulation capabilities,so bots can learn about their environment then think before they act.
What can we do to prepare for the new world of work? Because AI will be a far more formidable competitor than any human, we will be in a frantic race to stay relevant. That will require us to take our cognitive and emotional skills to a much higher level.
Many experts believe that human beings will still be needed to do the jobs that require higher-order critical, creative, and innovative thinking and the jobs that require high emotional engagement to meet the needs of other human beings.
The challenge for many of us is that we do not excel at those skills because of our natural cognitive and emotional proclivities: We are confirmation-seeking thinkers and ego-affirmation-seeking defensive reasoners. We will need to overcome those proclivities in order to take our thinking, listening, relating, and collaborating skills to a much higher level.
What is needed is a new definition of being smart, one that promotes higher levels of human thinking and emotional engagement.
The new smart will be determined not by what or how you know but by the quality of your thinking, listening, relating, collaborating, and learning. Quantity is replaced by quality.
And that shift will enable us to focus on the hard work of taking our cognitive and emotional skills to a much higher level.
Facts on their own don’t tell you anything. It’s only paired with preferences, desires, with whatever gives you pleasure or pain, that can guide your behavior. Even if you knew the facts perfectly, that still doesn’t tell you anything about what you should do.”
Even if we were able to live life according to detailed calculations, doing so would put us at a massive disadvantage. This is because we live in a world of deep uncertainty, under which neat logic simply isn’t a good guide.
It’s well-established that data-based decisions doesn’t inoculate against irrationality or prejudice, but even if it was possible to create a perfectly rational decision-making system based on all past experience, this wouldn’t be a foolproof guide to the future.
Courageous acts and leaps of faith are often attempts to overcome great and seemingly insurmountable challenges. (It wouldn’t take much courage if it were easy to do.) But while courage may be irrational or hubristic, we wouldn’t have many great entrepreneurs or works of art without those with a somewhat illogical faith in their own abilities.
There are occasions where overly rational thinking would be highly inappropriate. Take finding a partner, for example. If you had the choice between a good-looking high-earner who your mother approves of, versus someone you love who makes you happy every time you speak to them—well, you’d be a fool not to follow your heart.
And even when feelings defy reason, it can be a good idea to go along with the emotional rollercoaster. After all, the world can be an entirely terrible place and, from a strictly logical perspective, optimism is somewhat irrational.
But it’s still useful. “It can be beneficial not to run around in the world and be depressed all the time,” says Gigerenzer.
Of course, no human is perfect, and there are downsides to our instincts. But, overall, we’re still far better suited to the real world than the most perfectly logical thinking machine.
We’re inescapably irrational, and far better thinkers as a result.