Artificial intelligence pioneer says throw it all away and start again

Geoffrey Hinton harbors doubts about AI’s current workhorse. (Johnny Guatto / University of Toronto)

In 1986, Geoffrey Hinton co-authored a paper that, three decades later, is central to the explosion of artificial intelligence.

But Hinton says his breakthrough method should be dispensed with, and a new path to AI found.

… he is now “deeply suspicious” of back-propagation, the workhorse method that underlies most of the advances we are seeing in the AI field today, including the capacity to sort through photos and talk to Siri.

“My view is throw it all away and start again”

Hinton said that, to push materially ahead, entirely new methods will probably have to be invented. “Max Planck said, ‘Science progresses one funeral at a time.’ The future depends on some graduate student who is deeply suspicious of everything I have said.”

Hinton suggested that, to get to where neural networks are able to become intelligent on their own, what is known as “unsupervised learning,” “I suspect that means getting rid of back-propagation.”

“I don’t think it’s how the brain works,” he said. “We clearly don’t need all the labeled data.”

Source: Axios

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

I prefer to be killed by my own stupidity rather than the codified morals of a software engineer

…or the learned morals of an evolving algorithm. SAS CTO Oliver Schabenberger

With the advent of deep learning, machines are beginning to solve problems in a novel way: by writing the algorithms themselves.

The software developer who codifies a solution through programming logic is replaced by a data scientist who defines and trains a deep neural network.

The expert who studied and learned a domain is replaced by a reinforcement learning algorithm that discovers the rules of play from historical data.

We are learning incredible lessons in this process.

But does the rise of such highly sophisticated deep learning mean that machines will soon surpass their makers? They are surpassing us in reliability, accuracy and throughput. But they are not surpassing us in thinking or learning. Not with today’s technology.

The artificial intelligence systems of today learn from data – they learn only from data. These systems cannot grow beyond the limits of the data by creating, innovating or reasoning.

Even a reinforcement learning system that discovers rules of play from past data cannot develop completely new rules or new games. It can apply the rules in a novel and more efficient way, but it does not invent a new game. The machine that learned to play Go better than any human being does not know how to play Poker.

Where to from here?

True intelligence requires creativity, innovation, intuition, independent problem solving, self-awareness and sentience. The systems built based on deep learning do not – and cannot – have these characteristics. These are trained by top-down supervised methods.

We first tell the machine the ground truth, so that it can discover its regularities. They do not grow beyond that.

Source: InformationWeek



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Will Satya’s ‘Charlottesville email’ shape AI applications at Microsoft?


“You can’t paint what you ain’t.”

– Drew Struzan

Those words got to me 18 years ago during an interview I had with this esteemed artist. We were working on a project together, an interactive CD about his movie posters, several of which were classics by then, when the conversation wandered off the subject of art and we began to examine the importance of being true to one’s self.  

“Have you ever, in your classes or seminars talked much about the underlying core foundation principles of your life?” I asked Drew that day.

His answer in part went like this: “Whenever I talk, I’m asked to talk about my art, because that’s what they see, that’s what’s out front. But the power of the art comes out of the personality of the human being. Inevitably, you can’t paint what you ain’t.”

That conversation between us took place five days before Columbine, in April of 1999, when Pam and I lived in Denver and a friend of ours had children attending that school. That horrific event triggered a lot of value discussions and a lot of human actions, in response to it.

Flash-forward to Charlottesville. And an email, in response to it, that the CEO of a large tech company sent his employees yesterday, putting a stake in the ground about what his company stands for, and won’t stand for, during these “horrific” times.

“… At Microsoft, we strive to seek out differences, celebrate them and invite them in. As a leader, a key part of your role is creating a culture where every person can do their best work, which requires more than tolerance for diverse perspectives. Our growth mindset culture requires us to truly understand and share the feelings of another person. …”

If Satya Nadella’s email expresses the emerging personality at Microsoft, the power source from which it works, then we are cautiously optimistic about what this could do for socializing AI.

It will take this kind of foundation-building, going forward, as MS introduces more AI innovations, to diminish the inherent bias in deep learning approaches and the implicit bias in algorithms.

It will take this depth of awareness to shape the values of Human-AI collaboration, to protect the humans who use AI. Values that, “seek out differences, celebrate them and invite them in.”

It will require unwavering dedication to this goal. Because. You can’t paint what you ain’t.

Blogger, Phil Lawson
SocializingAI.com



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Satya Nadella’s message to Microsoft after the attack in Charlottesville

Yesterday (Aug. 14), Microsoft CEO Satya Nadella sent out the following email to employees at Microsoft after the deadly car crash at a white nationalist rally in in Charlottesville, Virginia, on Saturday, Aug. 12:

This past week and in particular this weekend’s events in Charlottesville have been horrific. What I’ve seen and read has had a profound impact on me and I am sure for many of you as well. In these times, to me only two things really matter as a leader.

The first is that we stand for our timeless values, which include diversity and inclusion. There is no place in our society for the bias, bigotry and senseless violence we witnessed this weekend in Virginia provoked by white nationalists. Our hearts go out to the families and everyone impacted by the Charlottesville tragedy.

The second is that we empathize with the hurt happening around us. At Microsoft, we strive to seek out differences, celebrate them and invite them in. As a leader, a key part of your role is creating a culture where every person can do their best work, which requires more than tolerance for diverse perspectives. Our growth mindset culture requires us to truly understand and share the feelings of another person. It is an especially important time to continue to be connected with people, and listen and learn from each other’s experiences.

As I’ve said, across Microsoft, we will stand together with those who are standing for positive change in the communities where we live, work and serve. Together, we must embrace our shared humanity, and aspire to create a society that is filled with respect, empathy and opportunity for all.

Feel free to share with your teams.

Satya

Source: Quartz

TO READ this blogger’s view of the above email click here.

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Artificial Intelligence’s White Guy Problem

nyt-white-guy-problem

Credit Bianca Bagnarelli

Warnings by luminaries like Elon Musk and Nick Bostrom about “the singularity” — when machines become smarter than humans — have attracted millions of dollars and spawned a multitude of conferences.

But this hand-wringing is a distraction from the very real problems with artificial intelligence today, which may already be exacerbating inequality in the workplace, at home and in our legal and judicial systems.

Sexism, racism and other forms of discrimination are being built into the machine-learning algorithms that underlie the technology behind many “intelligent” systems that shape how we are categorized and advertised to.

A very serious example was revealed in an investigation published last month by ProPublica. It found that widely used software that assessed the risk of recidivism in criminals was twice as likely to mistakenly flag black defendants as being at a higher risk of committing future crimes. It was also twice as likely to incorrectly flag white defendants as low risk.

The reason those predictions are so skewed is still unknown, because the company responsible for these algorithms keeps its formulas secret — it’s proprietary information. Judges do rely on machine-driven risk assessments in different ways — some may even discount them entirely — but there is little they can do to understand the logic behind them.

Histories of discrimination can live on in digital platforms, and if they go unquestioned, they become part of the logic of everyday algorithmic systems.

Another scandal emerged recently when it was revealed that Amazon’s same-day delivery service was unavailable for ZIP codes in predominantly black neighborhoods. The areas overlooked were remarkably similar to those affected by mortgage redlining in the mid-20th century. Amazon promised to redress the gaps, but it reminds us how systemic inequality can haunt machine intelligence.

And then there’s gender discrimination. Last July, computer scientists at Carnegie Mellon University found that women were less likely than men to be shown ads on Google for highly paid jobs. The complexity of how search engines show ads to internet users makes it hard to say why this happened — whether the advertisers preferred showing the ads to men, or the outcome was an unintended consequence of the algorithms involved.

Regardless, algorithmic flaws aren’t easily discoverable: How would a woman know to apply for a job she never saw advertised? How might a black community learn that it were being overpoliced by software?

Like all technologies before it, artificial intelligence will reflect the values of its creators.

Source: New York Times – Kate Crawford is a principal researcher at Microsoft and co-chairwoman of a White House symposium on society and A.I.

test

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

How Deep Learning is making AI prejudiced

Bloggers note: The authors of this research paper show what they refer to as “machine prejudice” and how it derives so fundamentally from human culture. 

“Concerns about machine prejudice are now coming to the fore–concerns that our historic biases and prejudices are being reified in machines,” they write. “Documented cases of automated prejudice range from online advertising (Sweeney, 2013) to criminal sentencing (Angwin et al., 2016).”

Following are a few excerpts: 

machine-prejudiceAbstract

“Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language—the same sort of language humans are exposed to every day.

Discussion

“We show for the first time that if AI is to exploit via our language the vast knowledge that culture has compiled, it will inevitably inherit human-like prejudices. In other words, if AI learns enough about the properties of language to be able to understand and produce it, it also acquires cultural associations that can be offensive, objectionable, or harmful. These are much broader concerns than intentional discrimination, and possibly harder to address.

Awareness is better than blindness

“… where AI is partially constructed automatically by machine learning of human culture, we may also need an analog of human explicit memory and deliberate actions, that can be trained or programmed to avoid the expression of prejudice.

“Of course, such an approach doesn’t lend itself to a straightforward algorithmic formulation. Instead it requires a long-term, interdisciplinary research program that includes cognitive scientists and ethicists. …”

Click here to download the pdf of the report
Semantics derived automatically from language corpora necessarily contain human biases
Aylin Caliskan-Islam , Joanna J. Bryson, and Arvind Narayanan

1 Princeton University
2 University of Bath
Draft date August 31, 2016.

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Why we can’t trust ‘blind big data’ to cure the world’s diseases

1020Once upon a time a former editor of WIRED, Chris Anderson, … envisaged how scientists would take the ever expanding ocean of data, send a torrent of bits and bytes into a great hopper, then crank the handles of huge computers that run powerful statistical algorithms to discern patterns where science cannot.

In short, Anderson dreamt of the day when scientists no longer had to think.

Eight years later, the deluge is truly upon us. Some 90 percent of the data currently in the world was created in the last two years … and there are high hopes that big data will pave the way for a revolution in medicine.

But we need big thinking more than ever before.

Today’s data sets, though bigger than ever, still afford us an impoverished view of living things.

It takes a bewildering amount of data to capture the complexities of life.

The usual response is to put faith in machine learning, such as artificial neural networks. But no matter their ‘depth’ and sophistication, these methods merely fit curves to available data.

we do not predict tomorrow’s weather by averaging historic records of that day’s weather

… here are other limitations, not least that data are not always reliable (“most published research findings are false,” as famously reported by John Ioannidis in PLOS Medicine). Bodies are dynamic and ever-changing, while datasets often only give snapshots, and are always retrospective.

Source: Wired

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Google teaches robots to learn from each other

article_robolearning-970x350

Google has a plan to speed up robotic learning, and it involves getting robots to share their experiences – via the cloud – and collectively improve their capabilities – via deep learning.

Google researchers decided to combine two recent technology advances. The first is cloud robotics, a concept that envisions robots sharing data and skills with each other through an online repository. The other is machine learning, and in particular, the application of deep neural networks to let robots learn for themselves.

They got the robots to pool their experiences to “build a common model of the skill” that, as the researches explain, was better and faster than what they could have achieved on their own.

As robots begin to master the art of learning it’s inevitable that one day they’ll be able to acquire new skills instantly at much, much faster rates than humans have ever been able to.

Source: Global Futurist

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

“Big data need big theory too”

This published paper written by Peter V. Coveney, Edward R. Dougherty, Roger R. Highfield

Abstractroyal-society-2


The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry.
Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales.

Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data.

Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote ‘blind’ big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.

Source: The Royal Society Publishing

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail